Jointly Controlled Lotteries with Biased Coins
نویسندگان
چکیده
We provide a mechanism that uses two biased coins and implements any distribution on a finite set of elements, in such a way that even if the outcomes of one of the coins is determined by an adversary, the final distribution remains unchanged. We apply this result to show that every quitting game in which at least two players have at least two continue actions has an undiscounted ε-equilibrium, for every ε > 0.
منابع مشابه
Who's biased? A meta-analysis of buyer-seller differences in the pricing of lotteries.
A large body of empirical research has examined the impact of trading perspective on pricing of consumer products, with the typical finding being that selling prices exceed buying prices (i.e., the endowment effect). Using a meta-analytic approach, we examine to what extent the endowment effect also emerges in the pricing of monetary lotteries. As monetary lotteries have a clearly defined norma...
متن کاملEfficient generation of fair dice with few biased coins
Given a random variable X which takes n equiprobable values, we consider several algorithmic questions related to the classical problem of simulating the outcomes of X by using a limited number of biased coins. in the framework of the project: \EEcienza di Algoritmi e Progetto di Strutture Informative".
متن کاملLearning with Limited Rounds of Adaptivity: Coin Tossing, Multi-Armed Bandits, and Ranking from Pairwise Comparisons
In many learning settings, active/adaptive querying is possible, but the number of rounds of adaptivity is limited. We study the relationship between query complexity and adaptivity in identifying the k most biased coins among a set of n coins with unknown biases. This problem is a common abstraction of many well-studied problems, including the problem of identifying the k best arms in a stocha...
متن کاملOn the Detection of Mixture Distributions with applications to the Most Biased Coin Problem
This paper studies the trade-off between two different kinds of pure exploration: breadth versus depth. The most biased coin problem asks how many total coin flips are required to identify a “heavy” coin from an infinite bag containing both “heavy” coins with mean θ1 ∈ (0, 1), and “light” coins with mean θ0 ∈ (0, θ1), where heavy coins are drawn from the bag with probability α ∈ (0, 1/2). The k...
متن کاملCompsci 650 Applied Information Theory 1.1 Identifying Whether a Coin Is Biased
1.1 Identifying Whether a Coin is Biased Lemma 1 We need O( 1 2 ) coin tosses to discern a biased coin with the probability of 1 2 − for head (and obviously with the probability of 12 + for tail), from an unbiased coin. Proof Consider two hypothesises H1 and H2 where respectively denote biased and unbiased coins. In other words, we have the following hypothesises: { H1 : biased p(h) = 12 − H2 :...
متن کامل